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Reference: Data analysis is an iterative process from question formulation to interpretation. Shearer C. The CRISP-DM model. J Data Warehousing, 2000.
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Reference: Reproducibility and transparency are improved with code-based analyses. Peng RD. Reproducible research. Science, 2071..
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Q3. SA4 4™ vs 0= D
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Reference: Statistical modeling and machine learning differ in goals: inference vs prediction. Shmueli G. Stat Sci; 2070.

LHSHS 15 25t 3|
Korean Society of Gynecologic Oncology




2026 OieHRQF SR H72] FA =R with

Q4. Tidy datal| X|& 7|&
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Wickham, H. (2014). Tidy Data. Journal of Statistical Software 59 (10). DOI: 10.18637/jss.v059.i110
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Reference: Tidy data provides a standard way to organize datasets. Wickham H. J Stat Softw, 2074.
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Q5. Garbage In, Garbage Out
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Reference: Model performance is fundamentally limited by data quality. Kuhn M, Johnson K. Applied Predictive Modeling, 2073.
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